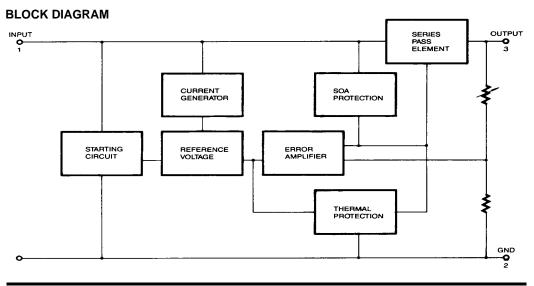

3-TERMINAL 1A POSITIVE VOLTAGE REGULATORS

The MC78XX series of three-terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.


FEATURES

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 11, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor SOA Protection

ORDERING INFORMATION

Device	Output Voltage Tolerance	Package	Operating Temperature
MC78XXCT (LM78XXCT) (KA78XX)	± 4%		0 ~ +125 °C
KA78XXA	± 2%	TO-220	0~+125 0
KA78XXI			-40 ~ +125 °C
MC78XXCDT (KA78XXR)	± 4%		0 ~ +125 °C
KA78XXRA	± 2%	D-PAK	
KA78XXRI	± 4%		-40 ~ +125 °C

Rev. C

ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C, unless otherwise specified)

Characteristic	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V)	VI	35	V
(for $V_0 = 24V$)	VI	40	V
Thermal Resistance Junction-Cases	$R_{\theta JC}$	5	°C/W
Thermal Resistance Junction-Air	$R_{\theta JA}$	65	°C/W
Operating Temperature Range KA78XX/A/R/RA KA78XXI/RI	T _{OPR}	0 ~ +125 -40 ~ +125	°C °C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

LM7805/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 10 V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions			M780	5I	L	.M780	Unit	
Cital acteristic	Symbol	16	si Conditions	Min	Тур	Max	Min	Тур	Max	Oilit
		T _J =+25 °C		4.8	5.0	5.2	4.8	5.0	5.2	
Output Voltage	Vo	$5.0\text{mA} \leq I_{O}$	≤1.0A, P _O ≤15W							V
		$V_1 = 7V \text{ to } 2$	20V				4.75	5.0	5.25	
		$V_1 = 8V \text{ to } 2$	20V	4.75	5.0	5.25				
Line Regulation	ΔV_{Ω}	T .05°C	$V_0 = 7V \text{ to } 25V$ $V_1 = 8V \text{ to } 12V$		4.0	100		4.0	100	mV
Zino regulation	Δνο	1J=+25°C	$V_I = 8V$ to 12V		1.6	50		1.6	50	IIIV
Load Pagulation	ΔV_{Ω}	T _ 125°C	I _O = 5.0mA to 1.5A		9	100		9	100	mV
Load Regulation	ΔVO	1 J=+25°C	I _O =250mA to 750mA		4	50		4	50	mv
Quiescent Current	Ιq	T _J =+25 °C	T _J =+25 °C		5.0	8		5.0	8	mA
		$I_0 = 5 \text{mA to}$	1.0A		0.03	0.5		0.03	0.5	
Quiescent Current Change	ΔI_Q	$V_I = 7V$ to 2	5V					0.3	1.3	mA
		$V_I = 8V \text{ to } 2$	5V		0.3	1.3				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-0.8			-0.8		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		42			42		μV/Vo
Ripple	RR	f = 120Hz		62	73		62	73		dB
Rejection	KK	$V_0 = 8 \text{ to } 1$	$V_0 = 8 \text{ to } 18V$		73		02	73		иь
Dropout Voltage	Vo	$I_O = 1A$, $T_J = +25$ °C			2			2		V
Output Resistance	Ro	f = 1KHz			15			15		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C			230			230		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2			2.2		Α

^{*} T_{MIN} <T_J <T_{MAX} LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C LM78XX/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C

^{*} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7806/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 \text{mA}$, $V_I = 11 \text{V}$ $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, unless otherwise specified)

Characteristic	Symbol	То	L	M7806	I		Unit			
Cital acteristic	Symbol	Tes	st Conditions	Min	Тур	Max	Min	Тур	Max	Onit
		T _J =+25 °C		5.75	6.0	6.25	5.75	6.0	6.25	
Output Voltage	Vo	5.0mA ≤ I ₀ ≤	≤1.0A, P _D ≤15W							V
·		$V_1 = 8.0V \text{ to}$	21V				5.7	6.0	6.3	
		$V_1 = 9.0V \text{ to}$	21V	5.7	6.0	6.3				
Line Regulation	ΔV_{O}	T _ 125 °C	$V_1 = 8V \text{ to } 25V$		5	120		5	120	mV
Line Regulation	4.0	1 J=+23 C	$V_i = 9V$ to $13V$		1.5	60		1.5	60	1117
Load Regulation	ΔV_{O}	T _{.1} =+25 °C	I_0 =5mA to 1.5A		9	120		9	120	mV
	4.0	1 _J =+25 °C	I _O =250mA to750A		3	60		3	60	1110
Quiescent Current	ΙQ	T _J =+25 °C			5.0	8		5.0	8	mA
		$I_0 = 5mA$ to 1A				0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 8V \text{ to } 2$	5V						1.3	mA
		$I_0 = 5$ mA to	5V			1.3				
Output Voltage Drift	$\Delta V_O/\Delta T$	$I_0 = 5mA$			-0.8			-0.8		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		45			45		$\mu V/V_O$
Ripple Rejection	RR	f = 120Hz $V_1 = 9V \text{ to } 1$	9V	59	75		59	75		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C			2			2		V
Output Resistance	R_D	f = 1KHz			19			19		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A	=+25°C		250			250		mA
Peak Current	I_{PK}	T _J =+25 °C	•		2.2			2.2		Α

^{*}T_{MIN} <T_J <T_{MAX}
LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XXI/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C
*Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7808/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test Circuit, $T_{MIN} < T_{J} < T_{MAX}$, $I_{O} = 500$ mA, $V_{I} = 14$ V, $C_{I} = 0.33 \mu$ F, $C_{O} = 0.1 \mu$ F, unless otherwise specified)

Characteristic	Symbol	Test Conditions					LM780	08	Unit	
Characteristic	Symbol	162	Conditions	Min	Тур	Max	Min	Тур	Max	Ollit
		T _J =+25 °C		7.7	8.0	8.3	7.7	8.0	8.3	
Output Voltage	Vo	$5.0\text{mA} \le I_0 \le$	1.0A, P _O ≤15W							V
		$V_1 = 10.5V \text{ to}$	23V				7.6	8.0	8.4	
		$V_1 = 11.5V \text{ to}$	23V	7.6	8.0	8.4				
Line Regulation	ΔV_{Ω}	T ₁ =+ 25°C	$V_1 = 10.5 \text{V to } 25 \text{V}$		5.0	160		5.0	160	mV
Line Regulation	0	13 1 25 5	$V_1 = 11.5 \text{V to } 17 \text{V}$		2.0	80		2.0	80	IIIV
Load Regulation	ΔV_{O}	T 125°C	o = 5.0mA to 1.5A		10	160		10	160	mV
Load Regulation	2.0	I = +23 C	_o = 250mA to 750mA		5.0	80		5.0	80	IIIV
Quiescent Current	ΙQ	T _J =+25 °C			5.0	8		5.0	8	mA
		$I_0 = 5mA$ to	1.0A		0.05	0.5		0.05	0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 10.5A \text{ to}$	25V					0.5	1.0	mA
		$V_1 = 11.5V \text{ to}$	25V		0.5	1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-0.8			-0.8		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 1	100Khz, T _A =+25 °C		52			52		μV/Vo
Ripple	RR	f = 120Hz \/	' _i = 11.5V to 21.5	56	73		56	73		dB
Rejection	KK	1 = 120112, V	= 11.57 to 21.5	56	13		36	73		uБ
Dropout Voltage	V_D	$I_0 = 1A, T_J = 1$	+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			17			17		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A :	=+25 °C		230			230	,	mA
Peak Current	I_{PK}	T _J =+25 °C			2.2			2.2		Α

 $T_{MIN} < T_{J} < T_{MAX}$

LM78XX//RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XX//R: T_{MIN}= 0 °C, T_{MAX}= +125 °C
* Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7809/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit. $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 15 V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$. unless otherwise specified)

Characteristic	Symbol	т	est Conditions	L	M780	91	L	.M780	9	Unit
Characteristic	Syllibol	11	est Conditions	Min	Тур	Max	Min	Тур	Max	Offic
		T _J =+25 °C		8.65	9	9.35	8.65	9	9.35	
Output Voltage	Vo	V_{i} = 11.5V t	to 24V	8.6	9	9.4	8.6	9	9.4	V
Line Regulation	ΔV_{O}	T .05.00	$V_1 = 11.5V \text{ to } 25V$ $V_1 = 12V \text{ to } 25V$		6	180		6	180	mV
Line Regulation					2	90		2	90	IIIV
Load Regulation	ΔV_{Ω}	T25°C	$I_0 = 5\text{mA} \text{ to } 1.5\text{A}$		12	180		12	180	mV
Load Regulation	Δν0	1 J=+25 C	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		4	90		4	90	111.0
Quiescent Current	Ιq	T _J =+25 °C			5.0	8		5.0	8	mA
		$I_0 = 5mA to$	1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 11.5V$	to 26V						1.3	mA
		$V_1 = 12.5V$	to 26V			1.3				
Output Voltage Drift	$\Delta V_O/\Delta T$	$I_0 = 5mA$			-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		58			58		μV/V _O
Ripple Rejection	RR	f = 120Hz $V_1 = 13V$ to	23V	56	71		56	71		dB
Dropout Voltage	V_D	$I_0 = 1A, T_J = 1$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			17			17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T	_A =+25 °C		250			250		mA
Peak Current	I _{PK}	T _J = +25 °C			2.2			2.2		Α

^{*} T_{MIN} < T_{J} < T_{MAX} LM78XXI/RI: T_{MIN} = - 40 °C, T_{MAX} = +125 °C LM78XXI/R: T_{MIN} = 0 °C, T_{MAX} = +125 °C * Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7810/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500$ mA, $V_I = 16$ V, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F, unless otherwise specified)

Characteristic	Cumbal	T		LM781	101		Unit		
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C	9.6	10	10.4	9.6	10	10.4	
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A, P _D ≤15W							V
		$V_1 = 12.5V$ to 25V				9.5	10	10.5	
		V _i = 13.5V to 25V	9.5	10	10.5				
Line Regulation	41/	$T_J = +25^{\circ}C$ $V_I = 12.5V \text{ to } 25V$ $V_I = 13V \text{ to } 25V$		10	200		10	200	
Line Regulation	ΔV_{O}	$V_1 = 13V \text{ to } 25V$		3	100		3	100	mV
Load Regulation	ΔV_{O}	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$		12	200		12	200	mV
Load Rogalation	Δνο	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		4	400		4	400	
Quiescent Current	ΙQ	T _J =+25 °C		5.1	8		5.1	8	mA
		$I_O = 5$ mA to 1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 12.5V$ to 29V						1.0	mA
		$V_1 = 13.5V \text{ to } 29V$			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$		-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 100Khz, T _A =+25 °C		58			58		μV/Vo
Ripple	RR	f = 120Hz	56	71		56	71		dB
Rejection	KK	V _I = 13V to 23V	36	7 1		56	7 1		uБ
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz		17			17		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A =+25 °C		250			250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2			2.2		Α

 $^{^{\}star}T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}} \\ \text{LM78XXI/RI: } T_{\text{MIN}} = -40\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ \text{LM78XXI/R: } T_{\text{MIN}} = 0\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ ^{\star}\text{Load and line regulation are specified at constant, junction temperature. Change in } V_{\text{O}} \text{ due to heating effects must be taken into account separately. } Pulse testing with low duty is used.}$

LM7811/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_{J} < T_{MAX}$, $I_{O} = 500 \text{mA}$, $V_{I} = 18 \text{V}$, $C_{I} = 0.33 \mu\text{F}$, $C_{O} = 0.1 \mu\text{F}$, unless otherwise specified)

Ohamastaniatia	0	mbal T. (O. 19)		ı	LM781	l1I				
Characteristic	Symbol	10	est Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C	;	10.6	11	11.4	10.6	11	11.4	
Output Voltage	Vo	$5.0\text{mA} \leq I_{O}$	≤1.0A, P _D ≤15W							V
		$V_1 = 13.5V$	to 26V				10.5	11	11.5	
		V _I = 14.5V 1	to 26V	10.5	11	11.5				
Line Regulation		T. =+25°C	V _I = 13.5V to 25V		10	220		10	220	.,
Line regulation	ΔV_{O}	15-120 0	V _I = 14V to 21V		3.0	110		3	110	mV
Load Regulation	ΔVο	T+25°C	I _O = 5.0mA to 1.5A		12	220		12	220	mV
Load (togulation	70	11 = 120 0	I _O = 250mA to 750mA		4	110		4	110	
Quiescent Current	ΙQ	T _J =+25 °C			5.1	8		5.1	8	mA
		$I_0 = 5mA to$	o 1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 13.5V$	to 29V						1.0	mA
		$V_1 = 14.5V$	to 29V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		70			70		μV/V _O
Ripple	RR	f = 120Hz		55	71		55	71		dB
Rejection	KK	$V_I = 14V \text{ to}$	24V	ວວ	71		55	71		иь
Dropout Voltage	V_D	$I_O = 1A, T_J$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			18			18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T	Γ _A =+25 °C		250			250		mA
Peak Current	I_{PK}	T _J =+25 °C			2.2			2.2		Α

^{*}T_{MIN} <T_J <T_{MAX}
LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XXI/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C
*Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7812/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500$ mA, $V_I = 19$ V, $C_I = 0.33 \mu$ F, $C_O = 0.1 \cdot \mu$ F, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Test Conditions LM7812I LM78		Unit				
Ondidoteristic	Cymbol	.,	cst conditions	Min	Тур	Max	Min	Тур	Max	Oille
		T _J =+25 °C	•	11.5	12	12.5	11.5	12	12.5	
Output Voltage	Vo	$5.0\text{mA} \leq I_{O}$	≤1.0A, P _D ≤15W							V
		$V_1 = 14.5V$	to 27V				11.4	12	12.6	
		V_{I} = 15.5V 1	to 27V	11.4	12	12.6				
Line Regulation		T±25°C	V _I = 14.5V to 30V V _I = 16V to 22V		10	240		10	240	.,
Line Regulation	ΔV_{O}		V = 10 V to 22 V		3.0	120		3.0	120	mV
Load Regulation	ΔVο	T+25°C	I _O = 5mA to 1.5A		11	240		11	240	mV
Load Regulation	0	11-120 0	I _O = 250mA to 750mA		5.0	120		5.0	120	1117
Quiescent Current	ΙQ	T _J =+25 °C			5.1	8		5.1	8	mA
		$I_0 = 5mA to$	o 1.0A		0.1	0.5		0.1	0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 14.5V$	to 30V					0.5	1.0	mA
		$V_1 = 15V to$	30V			1.0				
Output Voltage Drift	$\Delta V_O/\Delta T$	$I_0 = 5mA$		0.5	-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		76			76		mV/V _O
Ripple	DD	f = 120Hz			74			74		ī
Rejection	RR	$V_1 = 15V to$	25V	55	71		55	71		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2			2		V
Output Resistance	Ro	f = 1KHz			18			18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T	Γ _A =+25 °C		230			230		mA
Peak Current	I_{PK}	$T_{J} = +25 ^{\circ}\text{C}$			2.2			2.2		Α

 $[\]begin{split} &T_{MIN}\!<\!T_{J}\!<\!T_{MAX}\\ &LM78XXI/RI:T_{MIN}\!=\!-40\,^{\circ}C,\,T_{MAX}\!=\!+125\,^{\circ}C\\ &LM78XXI/R:T_{MIN}\!=\!0\,^{\circ}C,\,T_{MAX}\!=\!+125\,^{\circ}C\\ &^{*}Load \ and \ line\ regulation\ are\ specified\ at\ constant,\ junction\ temperature.\ Change\ in\ V_{O}\ due\ to\ heating\ effects\ must\ be\ taken\ into\ account\ separately.\ Pulse\ testing\ with\ low\ duty\ is\ used. \end{split}$

LM7815/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 23 V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Charactaristic	Cumbal	Took Conditions	LI	M781	151				
Characteristic	Symbol	Test Conditions	Min	Ty p	Max	Min	Тур	Max	
		T _J =+25 °C	14.4	15	15.6	14.4	15	15.6	Unit
Output Voltage	Vo	5.0mA $\leq I_0 \leq 1.0A$, $P_D \leq 15W$ $V_1 = 17.5V$ to 30V $V_1 = 18.5V$ to 30V	14.25	15	15.75	14.25	15	15.75	V
Line Regulation		$T_J = +25^{\circ}C$ $\frac{V_I = 17.5 \text{V to } 30 \text{V}}{V_I = 20 \text{V to } 26 \text{V}}$		11	300		11	300	mV
Line Regulation	ΔV_{O}	$V_1 = 20V \text{ to } 26V$		3	150		3	150	
Load Regulation	ΔV_{Ω}	$I_O = 5mA$ to 1.5A		12	300		12	300	mV
Load Negulation	4.0	$T_J = +25^{\circ}C$ $I_O = 250mA to 750mA$		4	150		4	150	
Quiescent Current	ΙQ	T _J =+25 °C		5.2	8		5.2	8	mA
		$I_O = 5$ mA to 1.0A			0.5			0.5	
Quiescent Current Change	ΔI_{Q}	$V_1 = 17.5V \text{ to } 30V$						1.0	mA
		$V_1 = 18.5V \text{ to } 30V$			1.0				
Output Voltage Drift	$\Delta V_O/\Delta T$	$I_0 = 5mA$		-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 100Khz, T _A =+25 °C		90			90		μV/V _O
Ripple Rejection	RR	f = 120Hz V _I = 18.5V to 28.5V	54	70		54	70		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz		19			19		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A =+25 °C		25 0			250		mA
Peak Current	I_{PK}	T _J =+25 °C		2.2			2.2		Α

 $^{^*}T_{MIN} < T_J < T_{MAX} \\ LM78XXI/RI: T_{MIN} = -40 °C, T_{MAX} = +125 °C \\ LM78XX/R: T_{MIN} = 0 °C, T_{MAX} = +125 °C \\ ^*Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.$

LM7818/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, I_O =500mA, V_I =27V, C_I =0.33 μ F, C_O =0.1 μ F, unless otherwise specified)

Characteristic	Symbol	т.	est Conditions	I	LM781	8 I		LM78	18	Unit
Characteristic	Syllibol	10	est Conditions	Min	Тур	Max	Min	Тур	Max	Offic
		T _J =+25 °C		17.3	18	18.7	17.3	18	18.7	
Output Voltage	Vo	$5.0\text{mA} \leq I_{O}$	≤1.0A, P _D ≤15W							V
		$V_1 = 21V \text{ to}$	33V				17.1	18	18.9	
		$V_I = 22V$ to		17.1	18	18.9				
Line Regulation		T+25°C	$V_1 = 21V \text{ to } 33V$ $V_1 = 24V \text{ to } 30V$		15	360		15	360	.,
Line Regulation	ΔV_{O}	13 = 120 0	$V_1 = 24V \text{ to } 30V$		5	180		5	180	mV
Load Regulation	ΔV_{Ω}	T+25°C	$I_0 = 5 \text{mA to } 1.5 \text{A}$ $I_0 = 250 \text{mA to } 750 \text{mA}$		15	360		15	360	mV
Load (togulation	Δνο	1 J = 120 O	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		5.0	180		5.0	180	
Quiescent Current	ΙQ	T _J =+25 °C			5.2	8		5.2	8	mA
		$I_0 = 5mA to$	1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_I = 21V \text{ to}$	33V						1	mA
		$V_1 = 22V tc$	33V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		110			110		μV/V _O
Ripple	RR	f = 120Hz		53	69		53	69		dB
Rejection	KK	$V_1 = 22V tc$	32V	53	69		53	69		uБ
Dropout Voltage	V_D	$I_0 = 1A, T_J$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz	-		22			22		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T	_A =+25 °C		250			250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2			2.2		Α

 $T_{MIN} < T_{J} < T_{MAX}$

LM78XX//RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XX//R: T_{MIN}= 0 °C, T_{MAX}= +125 °C

* Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7824/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 \text{mA}$, $V_I = 33 \text{V}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, unless otherwise specified)

Characteristic	Symbol	Symbol Test Conditions			241		Unit		
Characteristic	Syllibol	rest Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C	23	24	25	23	24	25	
Output Voltage	Vo	$5.0 \text{mA} \le I_0 \le 1.0 \text{A}, P_0 \le 15 \text{W}$							V
		V _I = 27V to 38V				22.8	24	25.25	
		V _I = 28V to 38V	22.8	24	25.2				
Line Regulation		$T_J = +25^{\circ}C$ $\frac{V_I = 27V \text{ to } 38V}{V_I = 30V \text{ to } 36V}$		17	480		17	480	
Line Regulation	ΔV_{O}	$V_1 = 425^{\circ} \text{C}$ $V_1 = 30 \text{V} \text{ to } 36 \text{V}$		6	240		6	240	mV
Load Regulation	ΔV_{O}	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$		15	480		15	480	mV
Load Regulation	Δ.0	$I_0 = 250 \text{mA}$ to 750 mA		5.0	240		5.0	240	IIIV
Quiescent Current	ΙQ	T _J =+25 °C		5.2	8		5.2	8	mA
		$I_O = 5$ mA to 1.0A		0.1	0.5		0.1	0.5	
Quiescent Current Change	ΔI_Q	V _I = 27V to 38V					0.5	1	mA
		V _I = 28V to 38V		0.5	1				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$		-1.5			-1.5		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 100KHz, T _A =+25 °C		160			60		$\mu V/V_O$
Ripple	RR	f = 120Hz	50	67		50	67		40
Rejection	KK	V _I = 28V to 38V	50	67		50	67		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz		28			28		mΩ
Short Circuit Current	I _{SC}	$V_1 = 35V, T_A = +25 ^{\circ}C$		230			230		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2			2.2		Α

 $^{^{\}star}T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}} \\ \text{LM78XXI/RI: } T_{\text{MIN}} = -40\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ \text{LM78XXI/R: } T_{\text{MIN}} = 0\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ ^{\star}\text{Load and line regulation are specified at constant, junction temperature. Change in } V_{\text{O}} \text{ due to heating effects must be taken into account separately. } Pulse testing with low duty is used.}$

LM7805A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +I25 °C, $I_O = 1A$, $V_I = 10V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+25 °C	4.9	5	5.1	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 \le 5W$ V ₁ = 7.5 to 20V	4.8	5	5.2	V
		$V_1 = 7.5 \text{ to } 25V$		5	50	
		I _O = 500mA				
Line Regulation	ΔV_{O}	V _I = 8V to 12V		3	50	V
		T _J =+25 °C V _I = 7.3V to 25V	′	5	50	
		V _i = 8V to 12V		1.5	25	
		T _J =+25 °C		9	100	
Load Regulation	ΔV_{O}	$I_0 = 5$ mA to 1.5A				
	2,0	$I_0 = 5 \text{mA to } 1 \text{A}$		9	100	V
		I _O = 250 to 750mA		4	50	
Quiescent Current	ΙQ	T _J =+25 °C		5.0	6	mA
		$I_0 = 5mA$ to 1A			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 8 \text{ V to } 25\text{V}, I_0 = 500\text{mA}$			8.0	mA
		$V_1 = 7.5 \text{V to } 20 \text{V}, T_J = +25 ^{\circ}\text{C}$			0.8	
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA		-0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz, I_0 = 500mA$ V _I = 8V to 18V		68		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2		V
Output Resistance	Ro	f = 1KHz		17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C		250		mA
Peak Current	I _{PK}	T _J = +25 °C		2.2		Α

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7806A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to+150 °C, $I_O = 1$ A, $V_I = 11$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditi	ons Min	Тур	Max	Unit
		T _J =+25 °C	5.58	6	6.12	
Output Voltage	Vo	$I_{O} = 5\text{mA to 1A}, P_{D} \le 1$ $V_{I} = 8.6 \text{ to 21V}$	5W 5.76	6	6.24	V
		V_1 = 8.6 to 25V I_0 = 500mA		5	60	
Line Regulation	ΔV_{O}	V _I = 9V to 13V		3	60	mV
		T _J =+25 °C V _I = 8.3V	to 21V	5	60	
		V _I = 9V to	13V	1.5	30	
				9	100	.,
Load Regulation	ΔV_{O}	$I_0 = 5$ mA to 1A		4	100	mV
		I _O = 250 to 750mA		5.0	50	
Quiescent Current	ΙQ	T _J =+25 °C		4.3	6	mA
		$I_0 = 5mA$ to 1A			0.5	
Quiescent Current Change	ΔI_{Q}	$V_1 = 9V \text{ to } 25V, I_0 = 50$	00mA		0.8	mA
		V_{I} = 8.5V to 21V, T_{J} =+	-25 °C		0.8	
Output Voltage Drift	ΔV/ΔΤ	$I_O = 5mA$		-0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C		10		μ V/V _O
Ripple Rejection	RR	$f = 120$ Hz, $I_0 = 500$ mA $V_1 = 9$ V to 19V	1	65		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2		V
Output Resistance	Ro	f = 1KHz		17		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A =+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

LM7808A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to+150 °C, $I_O = 1A$, $V_I = 14V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+25 °C	7.84	8	8.16	
Output Voltage	Vo	$I_O = 5mA \text{ to } 1A, P_D \le 15W$ $V_1 = 8.6 \text{ to } 21V$		8	8.3	V
		V _I = 10.6 to 25V I _O = 500mA		6	80	
Line Regulation	ΔV_{O}	V _I = 11to 17V		3	80	mV
		T _J =+25 °C V _I = 10.4V to 23V		6	80	
		V _I = 11V to 17V		2	40	
		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to } 1.5\text{A}$		12	100	
Load Regulation	ΔV_{O}	I _O = 5mA to 1A		12	12 100 mV	
		I _O = 250 to 750mA		5	50	
Quiescent Current	lα	T _J =+25 °C		5.0	6	mA
		$I_0 = 5mA$ to 1A			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 11V$ to 25V, $I_0 = 500$ mA			0.8	mA
		V_I = 10.6V to 23V, T_J =+25 °C			0.8	
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA		-0.8		mV /°C
Output Noise Voltage	V _N	f = 10Hz to 100 KHz $T_A = +25$ °C		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz$, $I_0 = 500mA$ $V_1 = 11.5V$ to 21.5V		62		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2		V
Output Resistance	Ro	f = 1KHz		18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25°C		250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7809A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +125 °C, $I_O = 1$ A, $V_I = 15$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _J =+25 °C		8.82	9.0	9.18	
Output Voltage	Vo	Ü	$I_0 = 5mA \text{ to } 1A, P_D \le 15W$ $V_1 = 11.2 \text{ to } 24V$		9.0	9.35	V
		V_{I} = 11.7 to 2 I_{O} = 500mA	25V		6	90	
Line Regulation	ΔV_{O}	V_{I} = 12.5 to 1	9V		4	45	mV
		T _J =+25 °C	V_{I} = 11.5V to 24V		6	90	
		11 = 120 0	V_{i} = 12.5V to 19V		2	45	
Land Damidation		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	1.0A		12	100	.,
Load Regulation	ΔV_{O}	$I_0 = 5 \text{mA to}$	1.0A		12	100	mV
		I _O = 250 to 750mA			5	50	
Quiescent Current	lα	T _J =+25 °C			5.0	6.0	mA
		$V_1 = 11.7V \text{ to } 25V, T_J = +25 ^{\circ}\text{C}$				0.8	
Quiescent Current Change	ΔI_Q	$V_1 = 12V \text{ to } 25V, I_0 = 500\text{mA}$				0.8	mA
		I _O = 5mA to 1.0A				0.5	
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA			-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 1 $T_A = +25 ^{\circ}\text{C}$	100KHz		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz$, $I_0 = 500mA$ $V_1 = 12V$ to 22V			62		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C			2.0		V
Output Resistance	Ro	f = 1KHz			17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C			250		mA
Peak Current	I _{PK}	T _J =+25 °C	<u> </u>		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7810A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to+125 °C, $I_O = 1A$, $V_J = 16V$, $C_J = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit	
		T _J =+25 °C		9.8	10	10.2		
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_0 \le 15W$ $V_1 = 12.8 \text{ to } 25V$		9.6	10	10.4	V	
		V_{I} = 12.8 to 2 I_{O} = 500mA	6V		8	100		
Line Regulation	ΔV_{O}	V _I = 13to 20V	!		4	50	mV	
		T _J =+25 °C	V _I = 12.5V to 25V		8	100		
		13-120 0	V _I = 13V to 20V		3	50		
Load Regulation	A)/	$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	1.5A		12	100		
Load Regulation	ΔV_{O}	$I_O = 5mA$ to 1.0A			12	100	mV	
		I _O = 250 to 750mA			5	50		
Quiescent Current	lα	T _J =+25 °C			5.0	6.0	mA	
			$V_1 = 13V \text{ to } 2$	26V, T _J =+25 °C			0.5	
Quiescent Current Change	ΔI_Q	ΔI_Q $V_1 = 12.8 \text{V to } 25 \text{V}, I_O = 500 \text{mA}$ $I_O = 5 \text{mA to } 1.0 \text{A}$				0.8	mA	
						0.5		
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA			-1.0		mV °C	
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O	
Ripple Rejection	RR	$f = 120Hz, I_O = 500mA$ $V_I = 14V \text{ to } 24V$			62		dB	
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		V	
Output Resistance	Ro	f = 1KHz			17		mΩ	
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C			250		mA	
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α	

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7811A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. T_J = 0 to +125 °C, I_O = 1A, V_J = 18V, C_J = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit	
		T _J =+25 °C		10.8	11.0	11.2		
Output Voltage	Vo	-	$I_0 = 5mA \text{ to } 1A, P_0 \le 15W$ $V_1 = 13.8 \text{ to } 26V$		11.0	11.4	٧	
		V_1 = 12.8 to 2 I_0 = 500mA	26V		10	110		
Line Regulation	ΔV_{O}	V _I = 15 to 21	V		4	55	mV	
		T ₁ =+25 °C	V_{I} = 13.5V to 26V		10	110		
		13 120 0	V_{I} = 15V to 21V		3	55		
Load Regulation			$T_J = +25 ^{\circ}\text{C}$ $I_0 = 5\text{mA to } 1.5\text{A}$			12	100	
Load Regulation	ΔV_{O}	$I_0 = 5 \text{mA to}$	1.0A		12	100	mV	
		I _O = 250 to 750mA			5	50		
Quiescent Current	lα	T _J =+25 °C			5.1	6.0	mA	
		$V_1 = 13.8V \text{ to}$	26V, T _J =+25 °C			0.8		
Quiescent Current Change	ΔI_Q	$V_1 = 14V \text{ to } 27V, I_0 = 500\text{mA}$				0.8	mA	
		I _O = 5mA to 1.0A				0.5		
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-1.0		mV /°C	
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O	
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 14V to 24V			61		dB	
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C			2.0		V	
Output Resistance	Ro	f = 1KHz			18		mΩ	
Short Circuit Current	I _{sc}	V _I = 35V, T _A	=+25 °C		250		mA	
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α	

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7812A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +125 °C, $I_O = 1A$, $V_I = 19V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit
		T _J =+25 °C		11.75	12	12.25	
Output Voltage	Vo	$I_0 = 5 \text{mA to}$ $V_1 = 14.8 \text{ to}$	1A, P _D ≤15W 27V	11.5	12	12.5	V
		V_{I} = 14.8 to 3 I_{O} = 500mA	0V		10	120	
Line Regulation	ΔV_{O}	V _I = 16 to 22	V		4	120	mV
		T _{.1} =+25°C	V _I = 14.5V to 27V		10	120	
		11 = 120 0	V _I = 16V to 22V		3	60	
Load Regulation	ΔVo	$T_J = +25^{\circ}C$ $I_0 = 5\text{mA to } 1.5\text{A}$			12	100	mV
Load Regulation	Δνο	I _O = 5mA to 1.0A			12	100	IIIV
		I _O = 250 to 750mA			5	50	
Quiescent Current	ΙQ	T _J =+25 °C			5.1	6.0	mA
		$V_1 = 15V \text{ to } 3$	30V, T _J =+25 °C			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 14V \text{ to } 27V, I_0 = 500\text{mA}$				0.8	B mA
		I _O = 5mA to 1.0A				0.8	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 14V to 24V			60		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		V
Output Resistance	Ro	f = 1KHz			18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A	=+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

LM7815A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +150 °C, $I_O = 1A$, $V_I = 23V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+25 °C	14.7	15	15.3	
Output Voltage	Vo	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ $V_{I} = 17.7 \text{ to } 30V$	14.4	15	15.6	V
		V _I = 17.9 to 30V I _O = 500mA		10	150	
Line Regulation	ΔV_{O}	V _I = 20 to 26V		5	150	mV
		T _J =+25 °C		11	150	
		$V_1 = 20V \text{ to } 26V$		3	75	
Land Danidation		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to } 1.5\text{A}$		12	100	
Load Regulation	ΔV_{O}	I _O = 5mA to 1.0A		12	100	mV
		I _O = 250 to 750mA		5	50	
Quiescent Current	lα	T _J =+25 °C		5.2	6.0	mA
		$V_I = 17.5V \text{ to } 30V, T_J = +25 ^{\circ}C$			0.5	
Quiescent Current Change	ΔI_{Q}	$V_1 = 17.5V \text{ to } 30V, I_0 = 500\text{mA}$			0.8	mA
		I _O = 5mA to 1.0A			0.8	
Output Voltage Drift	ΔV _O /ΔΤ	$I_0 = 5mA$		-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to $100KHzT_A = +25 °C$		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz$, $I_0 = 500mA$ $V_1 = 18.5V$ to $28.5V$		58		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2.0		V
Output Resistance	Ro	f = 1KHz		19		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A =+25 °C		250		mA
Peak Current	I _{PK}	T,=+25 °C		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

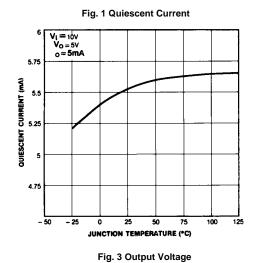
LM7818A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +150 °C, $I_O = 1A$, $V_I = 27V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _J =+25 °C		17.64	18	18.36	
Output Voltage	Vo	•	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ $V_{I} = 21 \text{ to } 33V$		18	18.7	V
		$V_1 = 21 \text{ to } 33^{\circ}$ $I_0 = 500\text{mA}$	V		15	180	
Line Regulation	ΔV_{O}	V _I = 21 to 33	V		5	180	mV
		T _{.l} =+25 °C	V_{I} = 20.6V to 33V		15	180	
		1 _J =+25 °C	V _I = 24V to 30V		5	90	
Load Regulation		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to } 1.5\text{A}$		15	100	.,
Load Regulation	ΔV_{O}	$I_0 = 5mA$ to	$I_O = 5$ mA to 1.0A		15	100	mV
		I _O = 250 to 750mA			7	50	
Quiescent Current	ΙQ	T _J =+25 °C			5.2	6.0	mA
		$V_1 = 21V \text{ to } 3$	33V, T _J =+25 °C			0.5	
Quiescent Current Change	ΔI_Q	ΔI_Q $V_1 = 21V \text{ to } 33V, I_O = 500\text{mA}$			0.8	mA	
		$I_0 = 5mA$ to	1.0A			0.8	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		$\mu V/V_O$
Ripple Rejection	RR	$f = 120Hz$, $I_O = 500mA$ $V_I = 18.5V$ to $28.5V$			57		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		V
Output Resistance	Ro	f = 1KHz			19		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A	=+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α

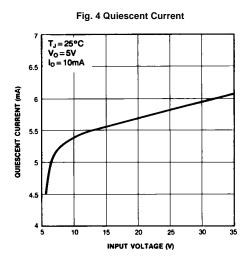
 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7824A/RA ELECTRICAL CHARACTERISTICS


(Refer to the test circuits. $T_J = 0$ to +150 °C, $I_O = 1A$, $V_I = 33V$, $C_I = 0.33\mu F$, $C_O = 0.1\mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _J =+25 °C		23.5	24	24.5	
Output Voltage	Vo	-	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ $V_{I} = 27.3 \text{ to } 38V$		24	25	V
		$V_1 = 27 \text{ to } 38^{\circ}$ $I_0 = 500 \text{mA}$	V		18	240	
Line Regulation	ΔV_{O}	V_{i} = 21 to 33	V		6	240	mV
		T _J =+25 °C	V _I = 26.7V to 38V		18	240	
		., .20 0	V _I = 30V to 36V		6	120	
Load Regulation	ΔVο	$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	1.5A		15	100	mV
Load Regulation	400	$I_0 = 5 \text{mA to}$	1.0A		15	100	inv
		I _O = 250 to 750mA			7	50	
Quiescent Current	ΙQ	T _J =+25 °C			5.2	6.0	mA
		$V_1 = 27.3V$ to 38V, $T_J = +25$ °C				0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 27.3V$ to 38V, $I_0 = 500$ mA				0.8	mA
		I _O = 5mA to 1.0A				8.0	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-1.5		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 1 $T_A = 25 ^{\circ}\text{C}$	00KHz		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz$, $I_0 = 500mA$ $V_1 = 18.5V$ to 28.5V			54		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25°C			2.0		V
Output Resistance	Ro	f = 1KHz			20		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C			250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.


TYPICAL PERFORMANCE CHARACTERISTICS

1.02 VI – Vo = 5V I o = 5mA

JUNCTION TEMPERATURE (°C)

100

- 25

TYPICAL APPLICATIONS

Fig. 5 DC Parameters

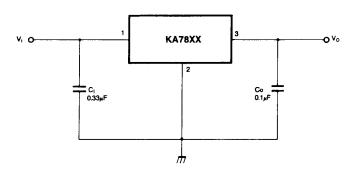


Fig. 6 Load Regulation

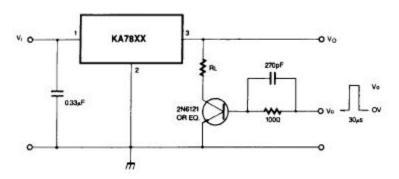
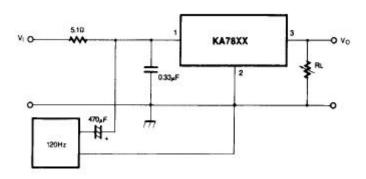



Fig. 7 Ripple Rejection

TYPICAL APPLICATIONS (Continued)

Fig. 8 Fixed Output Regulator

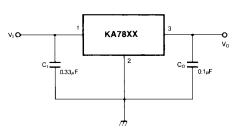
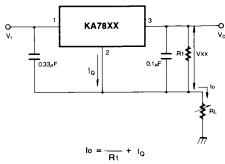
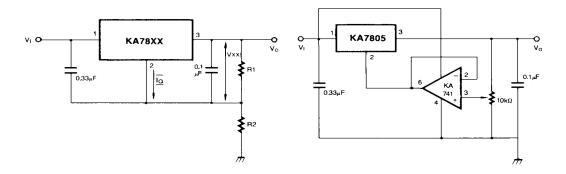



Fig. 9 Constant Current Regulator

Notes:


- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

 (2) C_I is required if regulator is located an appreciable distance from
- power Supply filter.

 (3) Co improves stability and transient response.

Fig. 10 Circuit for Increasing Output Voltage

Fig. 11 Adjustable Output Regulator (7 to 30V)

$$I_{R1} \ge 5 I_{Q}$$

 $V_{O} = V_{XX} (1+R_{2}/R_{1})+I_{Q}R_{2}$

TYPICAL APPLICATIONS (Continued)

Fig. 12 High Current Voltage Regulator Short Circuit Protection

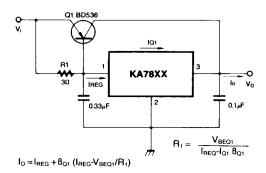
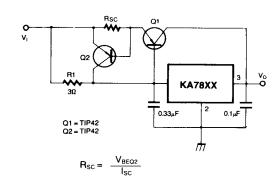


Fig. 13 High Output Current with



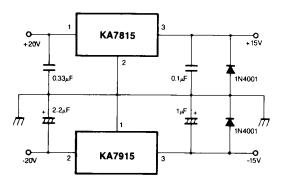
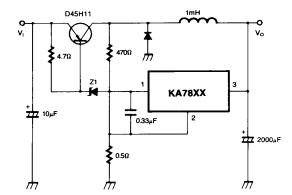


Fig. 14 Tracking Voltage Regulator

Fig. 15 Split Power Supply (±15V-1A)



TYPICAL APPLICATIONS (Continued)

Fig. 16 Negative Output Voltage Circuit

Fig. 17 switching Regulator

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 E^2CMOS^{TM} PowerTrench® FACT Quiet Series QSTM QSTM

 $\begin{array}{lll} \mathsf{FAST}^{\circledR} & \mathsf{Quiet} \; \mathsf{Series^{\intercal M}} \\ \mathsf{FASTr^{\intercal M}} & \mathsf{SuperSOT^{\intercal M}\text{--}3} \\ \mathsf{GTO^{\intercal M}} & \mathsf{SuperSOT^{\intercal M}\text{--}6} \\ \mathsf{HiSeC^{\intercal M}} & \mathsf{SuperSOT^{\intercal M}\text{--}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.